Given the root of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node's key.
The right subtree of a node contains only nodes with keys greater than the node's key.
Both the left and right subtrees must also be binary search trees.
Example 1:
**Input:** root = [2,1,3]
**Output:** true
Example 2:
**Input:** root = [5,1,4,null,null,3,6]
**Output:** false
**Explanation:** The root node's value is 5 but its right child's value is 4.
Constraints:
The number of nodes in the tree is in the range [1, 104].
-231 <= Node.val <= 231 - 1
ac1: inorder traversal
BST, inorder traversal is transcendent.
Traversal: consider three part: left,right and itself, it's about order.
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */classSolution {privateboolean firstNode =true; // first flag to handle corner test case, like it gives you MIN_VALUE;privateint pre =Integer.MIN_VALUE;publicbooleanisValidBST(TreeNode root) {if (root ==null) returntrue;// Traversal, left firstif (!isValidBST(root.left)) returnfalse;// selfif (root.val<= pre &&!firstNode) returnfalse; firstNode =false; pre =root.val;// rightif (!isValidBST(root.right)) returnfalse;returntrue; }}