Key points
Traversal:
pre-order, in-order, post-order
Two approaches: 1) DFS, 2) Iteration
Divide & Conquer VS Traversal:
DC: one send left & right two people to get the result, and then do sth.
T: one with a notebook walk through the tree
BST, Binary Search Tree:
in-order is a sorted list, important !
left < root < right, not duplicate
Tricks:
isLeaf(): root.left == null && root.right == null
every node: 1)root == null 2) root.left == null 3)root.right == null
Binary Indexed Tree:
the sum of (0, i), in O(logn) time.
Traverse
Pre-order
https://leetcode.com/problems/binary-tree-preorder-traversal/
Iterative
Copy public class Solution {
public List < Integer > preorderTraversal ( TreeNode root) {
Stack < TreeNode > stack = new Stack < TreeNode >();
List < Integer > res = new LinkedList < Integer >();
TreeNode curr = root;
while (curr != null || ! stack . isEmpty ()) {
while (curr != null ) {
res . add ( curr . val );
stack . push (curr);
curr = curr . left ;
}
TreeNode head = stack . pop ();
curr = head . right ;
}
return res;
}
}
Recursive
Copy class Solution {
public List < Integer > preorderTraversal ( TreeNode root) {
List < Integer > res = new LinkedList < Integer >();
traverse(root , res) ;
return res;
}
private void traverse ( TreeNode root , List < Integer > res) {
if (root == null ) return ;
res . add ( root . val );
traverse( root . left , res) ;
traverse( root . right , res) ;
}
}
In-order
https://leetcode.com/problems/binary-tree-inorder-traversal/
Iterative
Copy public class Solution {
public List < Integer > inorderTraversal ( TreeNode root) {
Stack < TreeNode > stack = new Stack < TreeNode >();
List < Integer > res = new LinkedList < Integer >();
TreeNode curr = root;
while (curr != null || ! stack . isEmpty ()) {
while (curr != null ) {
stack . push (curr);
curr = curr . left ;
}
TreeNode head = stack . pop ();
res . add ( head . val );
curr = head . right ;
}
return res;
}
}
Recursive
Copy class Solution {
public List < Integer > inorderTraversal ( TreeNode root) {
List < Integer > res = new LinkedList < Integer >();
traverse(root , res) ;
return res;
}
private void traverse ( TreeNode root , List < Integer > res) {
if (root == null ) return ;
traverse( root . left , res) ;
res . add ( root . val );
traverse( root . right , res) ;
}
}
Post-order
https://leetcode.com/problems/binary-tree-postorder-traversal/
Iterative
Copy class Solution {
public List < Integer > postorderTraversal ( TreeNode root) {
Stack < TreeNode > stack = new Stack < TreeNode >();
LinkedList < Integer > res = new LinkedList < Integer >();
TreeNode curr = root;
while (curr != null || ! stack . isEmpty ()) {
while (curr != null ) {
res . addFirst ( curr . val ); // Revered of pre-order
stack . push (curr);
curr = curr . right ; // Revered of pre-order
}
TreeNode head = stack . pop ();
curr = head . left ; // Revered of pre-order
}
return res;
}
}
Recursive
Copy class Solution {
public List < Integer > postorderTraversal ( TreeNode root) {
List < Integer > res = new LinkedList < Integer >();
traverse(root , res) ;
return res;
}
private void traverse ( TreeNode root , List < Integer > res) {
if (root == null ) return ;
traverse( root . left , res) ;
traverse( root . right , res) ;
res . add ( root . val );
}
}
Reference: https://discuss.leetcode.com/topic/30632/preorder-inorder-and-postorder-iteratively-summarization
Serialization and deserialization
https://leetcode.com/problems/find-duplicate-subtrees https://leetcode.com/problems/serialize-and-deserialize-binary-tree/description/
https://leetcode.com/problems/serialize-and-deserialize-bst
https://leetcode.com/problems/construct-string-from-binary-tree
https://leetcode.com/problems/construct-binary-tree-from-string
DFS or BFS?
BFS: level
DFS: go through a path
Common law
Copy 性质1:二叉树第i层上的结点数目最多为 2{i-1} (i≥1)。
性质2:深度为k的二叉树至多有2{k}-1个结点(k≥1)。
性质3:包含n个结点的二叉树的高度至少为log2 (n+1)。
性质4:在任意一棵二叉树中,若终端结点的个数为n0,度为2的结点数为n2,则n0=n2+1。
Array -> Complete Binary Tree: parent i, left 2i+1, right 2i+2
Types of Binary Tree
AVL Tree: |left height - right height| <= 1
Heap: Max Heap, Min Heap. Heap is complete binary tree.
Segment Tree
the leaves are values of nums
https://leetcode.com/problems/range-sum-query-mutable/description/
ac2: Segment Tree
more intuitive, yet more code. Notice: use divide and conquer, no need to care about the mid point unless building the tree.
Copy class NumArray {
class SegTreeNode {
int start , end , sum;
SegTreeNode left , right;
public SegTreeNode ( int start , int end){
this . start = start;
this . end = end;
sum = 0 ;
}
}
SegTreeNode root;
public NumArray ( int [] nums) {
root = build(nums , 0 , nums . length - 1 ) ;
}
private SegTreeNode build ( int [] nums , int start , int end) {
if (start < 0 || end >= nums . length || start > end) return null ;
int mid = start + (end - start) / 2 ;
SegTreeNode node = new SegTreeNode(start , end) ;
if (start == end) {
node . sum = nums[start];
} else {
node . left = build(nums , start , mid) ;
node . right = build(nums , mid + 1 , end) ;
node . sum = node . left . sum + node . right . sum ;
}
return node;
}
public void update ( int i , int val) {
update(root , i , val) ;
}
private void update ( SegTreeNode root , int i , int val) {
if (i < root . start || i > root . end ) return ; // out of range
if ( root . start == root . end ) {
root . sum = val; // leaf, sum = nums[i]
return ;
}
// divide and conquer
update( root . left , i , val) ;
update( root . right , i , val) ;
root . sum = root . left . sum + root . right . sum ;
}
public int sumRange ( int i , int j) {
return sumRange(root , i , j) ;
}
private int sumRange ( SegTreeNode root , int i , int j) {
if (i > root . end || j < root . start ) return 0 ; // out of range
if (i <= root . start && root . end <= j) return root . sum ; // current node within range, return value
// divide and conquer
int res = 0 ;
res += sumRange( root . left , i , j) ;
res += sumRange( root . right , i , j) ;
return res;
}
}
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* obj.update(i,val);
* int param_2 = obj.sumRange(i,j);
*/
Binary Indexed Tree
https://leetcode.com/problems/range-sum-query-mutable/description/ https://leetcode.com/problems/range-sum-query-2d-mutable/description/
ac1: Binary Indexed Tree
careful: bit.length = nums.length + 1; so need to do i++
in methods
Copy class NumArray {
int [] bit;
int [] nums;
public NumArray ( int [] nums) {
this . nums = nums;
bit = new int [ nums . length + 1 ];
for ( int i = 0 ; i < nums . length ; i ++ ) {
int val = nums[i];
nums[i] = 0 ;
update(i , val) ;
}
}
public void update ( int i , int val) {
// index + last '1' bit
int diff = val - nums[i];
nums[i] = val;
i ++ ;
while (i < bit . length ) {
bit[i] += diff;
i += i & ( - i);
}
}
private int getSum ( int i) {
// index - last '1' bit
i ++ ;
int res = 0 ;
while (i > 0 ) {
res += bit[i];
i -= i & ( - i);
}
return res;
}
public int sumRange ( int i , int j) {
return getSum(j) - getSum(i - 1 ) ;
}
}
/**
* Your NumArray object will be instantiated and called as such:
* NumArray obj = new NumArray(nums);
* obj.update(i,val);
* int param_2 = obj.sumRange(i,j);
*/
https://leetcode.com/problems/reverse-pairs/description/ https://leetcode.com/problems/count-of-smaller-numbers-after-self https://leetcode.com/problems/count-of-range-sum
Binary Search Tree
in-order asecending https://leetcode.com/problems/validate-binary-search-tree/description/ https://leetcode.com/problems/kth-smallest-element-in-a-bst/
Divide & Conquer
get result from children, then do something
https://leetcode.com/problems/longest-univalue-path/description/ https://leetcode.com/problems/count-univalue-subtrees/description/ https://leetcode.com/problems/subtree-of-another-tree/description/