Find all valid combinations of k numbers that sum up to n such that the following conditions are true:
Only numbers 1 through 9 are used.
Each number is used at most once.
Return a list of all possible valid combinations. The list must not contain the same combination twice, and the combinations may be returned in any order.
Example 1:
**Input:** k = 3, n = 7
**Output:** [[1,2,4]]
**Explanation:**
1 + 2 + 4 = 7
There are no other valid combinations.
Example 2:
**Input:** k = 3, n = 9
**Output:** [[1,2,6],[1,3,5],[2,3,4]]
**Explanation:**
1 + 2 + 6 = 9
1 + 3 + 5 = 9
2 + 3 + 4 = 9
There are no other valid combinations.
Example 3:
**Input:** k = 4, n = 1
**Output:** []
**Explanation:** There are no valid combinations.
Using 4 different numbers in the range [1,9], the smallest sum we can get is 1+2+3+4 = 10 and since 10 > 1, there are no valid combination.
Example 4:
**Input:** k = 3, n = 2
**Output:** []
**Explanation:** There are no valid combinations.
Example 5:
**Input:** k = 9, n = 45
**Output:** [[1,2,3,4,5,6,7,8,9]]
**Explanation:**
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45
There are no other valid combinations.
Constraints:
2 <= k <= 9
1 <= n <= 60
ac
classSolution {publicList<List<Integer>> combinationSum3(int k,int n) {// DFS, backtrackingList<List<Integer>> res =newArrayList<List<Integer>>();// edge casesif (k <1|| n <1) return res;// DFSbacktrack(1, k, n,newArrayList<Integer>(), res);return res; }privatevoidbacktrack(int s,int k,int remain,List<Integer> note,List<List<Integer>> res) {// walk, s <= i <= 9// if k == 1, stop, check remain. if remain == 0, add. remain < 0 continue, >0 return.// if k > 1 recursion -> if remain <= 0, return.// exitif (s >9|| k <1|| remain <0) return;// last oneif (k ==1) {for (int i = s; i <=9; i++) {if (i < remain) {continue; } elseif (i == remain) {note.add(i);res.add(newArrayList<Integer>(note));note.remove(note.size()-1);return; } elseif (i > remain){return; } }return; }// k > 1, continue recursionfor (int i = s; i <=9; i++) {if (i >= remain) return;note.add(i);backtrack(i+1, k-1, remain-i, note, res);note.remove(note.size()-1); } }}
classSolution {publicList<List<Integer>> combinationSum3(int k,int n) {List<List<Integer>> res =newArrayList<List<Integer>>();backtrack(1, k, n, res,newArrayList<Integer>());return res; }privatevoidbacktrack(int start,int remainK,int remainN,List<List<Integer>> res,List<Integer> note) {if (remainK ==0) { // up to k numbersif (remainN ==0) { // add up to number nres.add(newArrayList<Integer>(note)); }return; }for (int i = start; i <=9; i++) {note.add(i);backtrack(i+1, remainK-1, remainN - i, res, note);note.remove(note.size()-1); } }}