You are given the root of a binary tree containing digits from 0 to 9 only.
Each root-to-leaf path in the tree represents a number.
For example, the root-to-leaf path 1 -> 2 -> 3 represents the number 123.
Return the total sum of all root-to-leaf numbers. Test cases are generated so that the answer will fit in a 32-bit integer.
A leaf node is a node with no children.
Example 1:
**Input:** root = [1,2,3]
**Output:** 25
**Explanation:**
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.
Example 2:
**Input:** root = [4,9,0,5,1]
**Output:** 1026
**Explanation:**
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026.
Constraints:
The number of nodes in the tree is in the range [1, 1000].
0 <= Node.val <= 9
The depth of the tree will not exceed 10.
ac1: Backtracking
use StringBuilder, slower
/** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */classSolution {privateint sum;publicintsumNumbers(TreeNode root) { sum =0;StringBuilder sb =newStringBuilder();backtrack(root, sb);return sum; }privatevoidbacktrack(TreeNode root,StringBuilder sb) {// exitif (root ==null) return;// leafsb.append(root.val);if (root.left==null&&root.right==null) { sum +=Integer.parseInt(sb.toString()); }backtrack(root.left, sb);backtrack(root.right, sb);sb.setLength(sb.length() -1); }}// DFS, backtracking