1368. Minimum Cost to Make at Least One Valid Path in a Grid
https://leetcode.com/problems/minimum-cost-to-make-at-least-one-valid-path-in-a-grid
Description
Given a m x n grid
. Each cell of the grid
has a sign pointing to the next cell you should visit if you are currently in this cell. The sign of grid[i][j]
can be:
1 which means go to the cell to the right. (i.e go from
grid[i][j]
togrid[i][j + 1]
)2 which means go to the cell to the left. (i.e go from
grid[i][j]
togrid[i][j - 1]
)3 which means go to the lower cell. (i.e go from
grid[i][j]
togrid[i + 1][j]
)4 which means go to the upper cell. (i.e go from
grid[i][j]
togrid[i - 1][j]
)
Notice that there could be some invalid signs on the cells of the grid
which points outside the grid
.
You will initially start at the upper left cell (0,0)
. A valid path in the grid is a path which starts from the upper left cell (0,0)
and ends at the bottom-right cell (m - 1, n - 1)
following the signs on the grid. The valid path doesn't have to be the shortest.
You can modify the sign on a cell with cost = 1
. You can modify the sign on a cell one time only.
Return the minimum cost to make the grid have at least one valid path.
Example 1:

**Input:** grid = [[1,1,1,1],[2,2,2,2],[1,1,1,1],[2,2,2,2]]
**Output:** 3
**Explanation:** You will start at point (0, 0).
The path to (3, 3) is as follows. (0, 0) --> (0, 1) --> (0, 2) --> (0, 3) change the arrow to down with cost = 1 --> (1, 3) --> (1, 2) --> (1, 1) --> (1, 0) change the arrow to down with cost = 1 --> (2, 0) --> (2, 1) --> (2, 2) --> (2, 3) change the arrow to down with cost = 1 --> (3, 3)
The total cost = 3.
Example 2:

**Input:** grid = [[1,1,3],[3,2,2],[1,1,4]]
**Output:** 0
**Explanation:** You can follow the path from (0, 0) to (2, 2).
Example 3:

**Input:** grid = [[1,2],[4,3]]
**Output:** 1
Example 4:
**Input:** grid = [[2,2,2],[2,2,2]]
**Output:** 3
Example 5:
**Input:** grid = [[4]]
**Output:** 0
Constraints:
m == grid.length
n == grid[i].length
1 <= m, n <= 100
ac
Last updated
Was this helpful?