1969. Minimum Non-Zero Product of the Array Elements
https://leetcode.com/problems/minimum-non-zero-product-of-the-array-elements
Description
You are given a positive integer p. Consider an array nums (1-indexed) that consists of the integers in the inclusive range [1, 2p - 1] in their binary representations. You are allowed to do the following operation any number of times:
Choose two elements
xandyfromnums.Choose a bit in
xand swap it with its corresponding bit iny. Corresponding bit refers to the bit that is in the same position in the other integer.
For example, if x = 1101 and y = 0011, after swapping the 2nd bit from the right, we have x = 1111 and y = 0001.
Find the minimum non-zero product of nums after performing the above operation any number of times. Return this product modulo 109 + 7.
Note: The answer should be the minimum product before the modulo operation is done.
Example 1:
**Input:** p = 1
**Output:** 1
**Explanation:** nums = [1].
There is only one element, so the product equals that element.Example 2:
**Input:** p = 2
**Output:** 6
**Explanation:** nums = [01, 10, 11].
Any swap would either make the product 0 or stay the same.
Thus, the array product of 1 * 2 * 3 = 6 is already minimized.Example 3:
**Input:** p = 3
**Output:** 1512
**Explanation:** nums = [001, 010, 011, 100, 101, 110, 111]
- In the first operation we can swap the leftmost bit of the second and fifth elements.
    - The resulting array is [001, 110, 011, 100, 001, 110, 111].
- In the second operation we can swap the middle bit of the third and fourth elements.
    - The resulting array is [001, 110, 001, 110, 001, 110, 111].
The array product is 1 * 6 * 1 * 6 * 1 * 6 * 7 = 1512, which is the minimum possible product.Constraints:
1 <= p <= 60
ac
Last updated
Was this helpful?