Given an array of integers arr, find the sum of min(b), where b ranges over every (contiguous) subarray of arr. Since the answer may be large, return the answer modulo109 + 7.
Example 1:
**Input:** arr = [3,1,2,4]
**Output:** 17
**Explanation:**
Subarrays are [3], [1], [2], [4], [3,1], [1,2], [2,4], [3,1,2], [1,2,4], [3,1,2,4].
Minimums are 3, 1, 2, 4, 1, 1, 2, 1, 1, 1.
Sum is 17.
Example 2:
**Input:** arr = [11,81,94,43,3]
**Output:** 444
Constraints:
1 <= arr.length <= 3 * 104
1 <= arr[i] <= 3 * 104
ac: Monotoic queue
classSolution {publicintsumSubarrayMins(int[] arr) {int[] PLE =newint[arr.length]; // Number of previous larger elementint[] NLE =newint[arr.length]; // Number of next larger elementDeque<Integer> stack =newArrayDeque<>();for (int i =0; i <arr.length; i++) {while (!stack.isEmpty() && arr[stack.peek()] > arr[i]) {int largerIndex =stack.pop();NLE[largerIndex] = i - largerIndex -1; }PLE[i] =stack.isEmpty() ? i : i -stack.peek() -1;stack.push(i); }// There are remaining elements in stack, e.g. [1,2,3,4,5]while (!stack.isEmpty()) {int index =stack.pop();NLE[index] =arr.length- index -1; }long sum =0;long MOD = (long) 1e9+7;for (int i =0; i <arr.length; i++) {// See below explanation to calculate number of subarray.long subarrayCount = (PLE[i] +1) * (NLE[i] +1); sum = (sum + subarrayCount * arr[i]) % MOD; }return (int) sum; }}/*O(N) time, O(N) space.The number of subarrays with 3 in it will be anything that starts in [L..3] and ends in [3..R]. So we have [L..3] starting positions and [3..R] ending positions. In other words, we have d1 starting positions and d2 ending positions. So the total number of subarrays is just d1*d2.For example:in [9,7,8,3,4,6]we have 4 choices to start with (9,7,8,3)we have 3 choices to end with (3,4,6)So answer is just 4*3.*/