There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by an n x k cost matrix costs.
For example, costs[0][0] is the cost of painting house 0 with color 0; costs[1][2] is the cost of painting house 1 with color 2, and so on...
Return the minimum cost to paint all houses.
Example 1:
**Input:** costs = [[1,5,3],[2,9,4]]
**Output:** 5
**Explanation:**
Paint house 0 into color 0, paint house 1 into color 2. Minimum cost: 1 + 4 = 5;
Or paint house 0 into color 2, paint house 1 into color 0. Minimum cost: 3 + 2 = 5.
Example 2:
**Input:** costs = [[1,3],[2,4]]
**Output:** 5
Constraints:
costs.length == n
costs[i].length == k
1 <= n <= 100
2 <= k <= 20
1 <= costs[i][j] <= 20
Follow up: Could you solve it in O(nk) runtime?
ac
O(nk^2)
classSolution {publicintminCostII(int[][] costs) {// edge casesif (costs ==null||costs.length==0|| costs[0].length==0) return0;int row =costs.length;int col = costs[0].length;for (int r =1; r < row; r++) {for (int c =0; c < col; c++) {int min =Integer.MAX_VALUE; // min value from previous housefor (int k =0; k < col; k++) {if (k == c) continue; // avoid same color min =Math.min(min, costs[r-1][k]); } costs[r][c] += min; // update curr cell } }// check last row, get resultint res =Integer.MAX_VALUE;for (int c =0; c < col; c++) { res =Math.min(res, costs[row-1][c]); }return res; }}/*1 2 3 44 5 6 77 8 9 10*/
classSolution {publicintminCostII(int[][] costs) {// edge casesif (costs ==null||costs.length==0|| costs[0].length==0) return0;int row =costs.length;int col = costs[0].length;int min1idx =-1, min2idx =-1;for (int r =0; r < row; r++) {int tmpmin1 =-1, tmpmin2 =-1;for (int c =0; c < col; c++) {if (r >0) { // skip first rowif (min1idx == c) { // 1st min is same color, use 2nd color costs[r][c] += costs[r-1][min2idx]; } else { costs[r][c] += costs[r-1][min1idx]; } }// update 1st min and 2nd minif (tmpmin1 ==-1|| costs[r][c] < costs[r][tmpmin1]) { tmpmin2 = tmpmin1; tmpmin1 = c; } elseif (tmpmin2 ==-1|| costs[r][c] < costs[r][tmpmin2]) { tmpmin2 = c; } } min1idx = tmpmin1; min2idx = tmpmin2; }// check last row, get resultint res =Integer.MAX_VALUE;for (int c =0; c < col; c++) { res =Math.min(res, costs[row-1][c]); }return res; }}/*from O(nk^2) to O(nk), keep 2 variables from previous step: 1st min, 2nd min1 2 3 44 5 6 77 8 9 10*/