There are n cities numbered from 0 to n-1. Given the array edges where edges[i] = [fromi, toi, weighti] represents a bidirectional and weighted edge between cities fromi and toi, and given the integer distanceThreshold.
Return the city with the smallest number of cities that are reachable through some path and whose distance is at mostdistanceThreshold, If there are multiple such cities, return the city with the greatest number.
Notice that the distance of a path connecting cities i and j is equal to the sum of the edges' weights along that path.
Example 1:
**Input:** n = 4, edges = [[0,1,3],[1,2,1],[1,3,4],[2,3,1]], distanceThreshold = 4
**Output:** 3
**Explanation:** The figure above describes the graph.
The neighboring cities at a distanceThreshold = 4 for each city are:
City 0 -> [City 1, City 2]
City 1 -> [City 0, City 2, City 3]
City 2 -> [City 0, City 1, City 3]
City 3 -> [City 1, City 2]
Cities 0 and 3 have 2 neighboring cities at a distanceThreshold = 4, but we have to return city 3 since it has the greatest number.
Example 2:
**Input:** n = 5, edges = [[0,1,2],[0,4,8],[1,2,3],[1,4,2],[2,3,1],[3,4,1]], distanceThreshold = 2
**Output:** 0
**Explanation:** The figure above describes the graph.
The neighboring cities at a distanceThreshold = 2 for each city are:
City 0 -> [City 1]
City 1 -> [City 0, City 4]
City 2 -> [City 3, City 4]
City 3 -> [City 2, City 4]
City 4 -> [City 1, City 2, City 3]
The city 0 has 1 neighboring city at a distanceThreshold = 2.
Constraints:
2 <= n <= 100
1 <= edges.length <= n * (n - 1) / 2
edges[i].length == 3
0 <= fromi < toi < n
1 <= weighti, distanceThreshold <= 10^4
All pairs (fromi, toi) are distinct.
ac1: Floyd-Warshall, O(V^3)
classSolution {publicintfindTheCity(int n,int[][] edges,int distanceThreshold) {int[][] dist =newint[n][n];for (int i =0; i < n; i++) {Arrays.fill(dist[i],Integer.MAX_VALUE/2); // MAX_VALUE will cause overflow downstream dist[i][i] =0; }for (int[] edge : edges) {int u = edge[0];int v = edge[1];int weight = edge[2]; dist[u][v] = weight; dist[v][u] = weight; }// Standard Floyd-Warshall step: 1) iterate each V; 2) assume k is the mid point from i to j, relax dist[i][j];for (int k =0; k < n; k++) {for (int i =0; i < n; i++) {for (int j =0; j < n; j++) {if (dist[i][k] + dist[k][j] < dist[i][j]) { dist[i][j] = dist[i][k] + dist[k][j]; } } } }int res =-1;int minReach =Integer.MAX_VALUE;for (int i =0; i < n; i++) {int reach =0;for (int j =0; j < n; j++) {if (i == j) continue; // Same cityif (dist[i][j] <= distanceThreshold) { reach++; } }if (reach <= minReach) { res = i; minReach = reach; } }return res; }}// Floyd-Warshall, O(V^3) time, O(V^2) space. Tricky: use "Integer.MAX_VALUE / 2" to avoid overflow.
classSolution {publicintfindTheCity(int n,int[][] edges,int distanceThreshold) {Map<Integer,Map<Integer,Integer>> graph =newHashMap<>();int[][] dist =newint[n][n];for (int i =0; i < n; i++) {Arrays.fill(dist[i],Integer.MAX_VALUE/2); // MAX_VALUE will cause overflow downstream dist[i][i] =0;graph.put(i,newHashMap<>()); }for (int[] edge : edges) {int u = edge[0];int v = edge[1];int weight = edge[2];graph.get(u).put(v, weight);graph.get(v).put(u, weight); }for (int i =0; i < n; i++) { // Do the following for each V to get a matrix of distance.dijkstra(i, dist[i], graph); }int res =-1;int minReach =Integer.MAX_VALUE;for (int i =0; i < n; i++) {int reach =0;for (int j =0; j < n; j++) {if (i == j) continue; // Same cityif (dist[i][j] <= distanceThreshold) { reach++; } }if (reach <= minReach) { res = i; minReach = reach; } }return res; }privatevoiddijkstra(int src,int[] dist,Map<Integer,Map<Integer,Integer>> graph) {PriorityQueue<int[]> q =newPriorityQueue<>((a, b) -> a[1] - b[1]);q.offer(newint[]{src,0});while (!q.isEmpty()) {int[] curr =q.poll();int u = curr[0];int srcToU = curr[1];if (dist[u] < srcToU) continue; // src to u(dist[u]) is already smaller, no point to keep going.for (int v :graph.get(u).keySet()) {if (srcToU +graph.get(u).get(v) < dist[v]) { dist[v] = srcToU +graph.get(u).get(v);q.offer(newint[]{v, dist[v]}); } } } }}// Dijkstra, O(V*ElogV) time, O(V^2) space. E = V^2, so it's O(V^3logV), which is worse than Floyd-Warshall.// Tricky: you can use boolean[] visited to avoid loop, but it's better to rely on their weight, i.e. if (dist[u] < srcToU) continue;