Given an integer array nums, you need to find one continuous subarray that if you only sort this subarray in ascending order, then the whole array will be sorted in ascending order.
Return the shortest such subarray and output its length.
Example 1:
**Input:** nums = [2,6,4,8,10,9,15]
**Output:** 5
**Explanation:** You need to sort [6, 4, 8, 10, 9] in ascending order to make the whole array sorted in ascending order.
Example 2:
**Input:** nums = [1,2,3,4]
**Output:** 0
Example 3:
**Input:** nums = [1]
**Output:** 0
Constraints:
1 <= nums.length <= 104
-105 <= nums[i] <= 105
Follow up: Can you solve it in O(n) time complexity?
ac1: stack with 2 passes
Learnt: for array, think about two pass: from left and from right.
classSolution {publicintfindUnsortedSubarray(int[] nums) {int left =nums.length, right =0;Deque<Integer> stack =newArrayDeque<>();for (int i =0; i <nums.length; i++) {while (!stack.isEmpty() && nums[stack.peek()] > nums[i]) {int idx =stack.pop(); left =Math.min(left, idx); }stack.push(i); } stack =newArrayDeque<>();for (int i =nums.length-1; i >=0; i--) {while (!stack.isEmpty() && nums[i] > nums[stack.peek()]) {int idx =stack.pop(); right =Math.max(right, idx); }stack.push(i); }returnMath.max(0, right - left +1); }}// O(N) time, O(N) space// To find left and right bound.
ac2: similar idea without stack
We don't really need a stack to find the left/right boundary.
classSolution {publicintfindUnsortedSubarray(int[] nums) {int left =nums.length, right =0;// 1st pass from leftint max =Integer.MIN_VALUE;for (int i =0; i <nums.length; i++) { max =Math.max(max, nums[i]);if (nums[i] < max) {// nums[i] needs to swap with a number on the left, so i is the right boundary. right = i; } }// 2nd pass from rightint min =Integer.MAX_VALUE;for (int i =nums.length-1; i >=0; i--) { min =Math.min(min, nums[i]);if (nums[i] > min) {// nums[i] needs to swap with a number on the right, so i is the left boundary. left = i; } }returnMath.max(0, right - left +1); }}// O(N) time, O(1) space