Given an integer array nums and an integer k, return trueifnumshas a continuous subarray of size at least two whose elements sum up to a multiple ofk, orfalseotherwise.
An integer x is a multiple of k if there exists an integer n such that x = n * k. 0 is always a multiple of k.
Example 1:
**Input:** nums = [23,2,4,6,7], k = 6
**Output:** true
**Explanation:** [2, 4] is a continuous subarray of size 2 whose elements sum up to 6.
Example 2:
**Input:** nums = [23,2,6,4,7], k = 6
**Output:** true
**Explanation:** [23, 2, 6, 4, 7] is an continuous subarray of size 5 whose elements sum up to 42.
42 is a multiple of 6 because 42 = 7 * 6 and 7 is an integer.
Example 3:
**Input:** nums = [23,2,6,4,7], k = 13
**Output:** false
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 109
0 <= sum(nums[i]) <= 231 - 1
1 <= k <= 231 - 1
ac
math problem and kind of trick
class Solution {
public boolean checkSubarraySum(int[] nums, int k) {
// edge cases
if (nums == null || nums.length <= 1) return false;
Map<Integer, Integer> map = new HashMap<>();
map.put(0, -1); // -1 is to determine subarray length > 1
int currSum = 0;
for (int i = 0; i < nums.length; i++) {
currSum += nums[i];
if (k != 0) currSum %= k; // k cannot be 0 in mod, if k == 0, the elements need to be 0 to get result
if (map.containsKey(currSum)) {
if (i - map.get(currSum) > 1) return true; // subarray length > 1
} else {
map.put(currSum, i);
}
}
return false;
}
}
/*
key:
1. remainder, (a + n * k) % k == a % k, so: [23, 2, 4, 6, 7] -> [23,25,31,35,42] -> [5,1,1,5,0], between two 5, you must had add some n * k. (sum2 - sum1)%k == 0 -> sum2%k - Sum1%k == 0 -> find sum2 %k == sum1 % k.
2. careful about k == 0, when mod
3. don't override value for the same key in the map
*/