Given an integer array nums and an integer k, return trueifnumshas a continuous subarray of size at least two whose elements sum up to a multiple ofk, orfalseotherwise.
An integer x is a multiple of k if there exists an integer n such that x = n * k. 0 is always a multiple of k.
Example 1:
**Input:** nums = [23,2,4,6,7], k = 6
**Output:** true
**Explanation:** [2, 4] is a continuous subarray of size 2 whose elements sum up to 6.
Example 2:
**Input:** nums = [23,2,6,4,7], k = 6
**Output:** true
**Explanation:** [23, 2, 6, 4, 7] is an continuous subarray of size 5 whose elements sum up to 42.
42 is a multiple of 6 because 42 = 7 * 6 and 7 is an integer.
Example 3:
**Input:** nums = [23,2,6,4,7], k = 13
**Output:** false
Constraints:
1 <= nums.length <= 105
0 <= nums[i] <= 109
0 <= sum(nums[i]) <= 231 - 1
1 <= k <= 231 - 1
ac
math problem and kind of trick
classSolution {publicbooleancheckSubarraySum(int[] nums,int k) {// edge casesif (nums ==null||nums.length<=1) returnfalse;Map<Integer,Integer> map =newHashMap<>();map.put(0,-1); // -1 is to determine subarray length > 1int currSum =0;for (int i =0; i <nums.length; i++) { currSum += nums[i];if (k !=0) currSum %= k; // k cannot be 0 in mod, if k == 0, the elements need to be 0 to get resultif (map.containsKey(currSum)) {if (i -map.get(currSum) >1) returntrue; // subarray length > 1 } else {map.put(currSum, i); } }returnfalse; }}/*key:1. remainder, (a + n * k) % k == a % k, so: [23, 2, 4, 6, 7] -> [23,25,31,35,42] -> [5,1,1,5,0], between two 5, you must had add some n * k. (sum2 - sum1)%k == 0 -> sum2%k - Sum1%k == 0 -> find sum2 %k == sum1 % k. 2. careful about k == 0, when mod3. don't override value for the same key in the map*/